专升本/专转本/专接本
当前位置: 易学仕在线> 考试资讯> 报考> 大纲> 江西> 井冈山大学2021年专升本《微积分基础》科目考试大纲

井冈山大学2021年专升本《微积分基础》科目考试大纲

发布时间:2021/04/14 10:50:00 来源:易学仕专升本网 阅读量:2841 热点: 江西专升本

摘要:2021年井冈山大学专升本各专业考试大纲已经公布了,有报考此院校专业的同学们,以及不知道复习方向的你,不妨来看看下面为大家整理的2021年井冈山大学专升本《微积分基础》考试大纲。

  2021年井冈山大学专升本各专业考试大纲已经公布了,有报考此院校专业的同学们,以及不知道复习方向的你,不妨来看看下面为大家整理的2021年井冈山大学专升本《微积分基础》考试大纲 

井冈山大学2021年专升本《微积分基础》科目考试大纲

  考试要求


  考生应按本大纲的要求,掌握“微积分基础”中函数、极限和连续、一元函数微分学、一元函数积分学的基本概念、基本理论和基本方法。考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。

  考试内容


  一、函数、极限和连续


  (一)函数

  1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。

  2.掌握函数的单调性、奇偶性、有界性和周期性。

  3.理解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。

  4.掌握函数的四则运算与复合运算;掌握复合函数的复合过程。

  5.掌握基本初等函数的性质及其图像。

  6.理解初等函数的概念。

  7.会建立一些简单实际问题的函数关系式。

  (二)极限

  1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。

  2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。

  3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。会比较无穷小量的阶(高阶、低阶、同阶和等价)。会运用等价无穷小量替换求极限。

  4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:

  ;;并能用这两个重要极限求函数的极限。

  (三)连续

  1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。会判断分段函数在分段点的连续性。

  2.理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。

  3.理解“一切初等函数在其定义区间上都是连续的”,并会利用初等函数的连续性求函数的极限。

  4.掌握闭区间上连续函数的性质:最值定理(有界性定理),介值定理(零点存在定理)及其推论。会运用介值定理及其推论推证一些简单命题。

  二、一元函数微分学


  (一)导数与微分

  1.理解导数的概念及其几何意义,了解左导数与右导数的定义,理解函数的可导性与连续性的关系,会用定义求函数在一点处的导数。

  2.会求曲线上一点处的切线方程与法线方程。

  3.熟记导数的基本公式,会运用函数的四则运算求导法则,复合函数求导法则和反函数求导法则求导数。会求分段函数的导数。

  4.会求隐函数的导数。掌握对数求导法与参数方程求导法。

  5.理解高阶导数的概念,会求一些简单的函数的n阶导数。

  6.理解函数微分的概念,掌握微分运算法则与一阶微分形式不变性,理解可微与可导的关系,会求函数的一阶微分。

  (二)中值定理及导数的应用

  1.理解罗尔(Rolle)中值定理、拉格朗日(Lagrange)中值定理及它们的几何意义,理解柯西(Cauchy)中值定理、泰勒(Taylor)中值定理。会用罗尔中值定理证明方程根的存在性问题。会用拉格朗日中值定理证明一些简单的不等式及恒等式问题。会用柯西中值定理证明相关问题。

  2.掌握洛必达法则,会用洛必达法则求型的未定式的极限。

  3.会利用导数判定函数的单调性,会求函数的单调区间,会利用函数的单调性证明一些简单的不等式。

  4.理解函数极值的概念,会求函数的极值和最值,会解决一些简单的应用问题。

  5.会判定曲线的凹凸性,会求曲线的拐点。

  6.会求曲线的渐近线(水平渐近线、垂直渐近线和斜渐近线)。

  7.会描绘一些简单的函数的图形。

  三、一元函数积分学


  (一)不定积分

  1.理解原函数与不定积分的概念及其关系,理解原函数存在定理,掌握不定积分的性质。

  2.熟记基本不定积分公式。

  3.掌握不定积分的第一类换元法(“凑”微分法),第二类换元法(限于三角换元与一些简单的根式换元)。

  4.掌握不定积分的分部积分法。

  5.会求一些简单的有理函数的不定积分。

  (二)定积分

  1.理解定积分的概念与几何意义,掌握定积分的基本性质。

  2.理解变限积分函数的概念,掌握变限积分函数求导的方法。

  3.掌握牛顿—莱布尼茨(Newton—Leibniz)公式。

  4.掌握定积分的换元积分法与分部积分法。

  5.理解无穷区间上有界函数的广义积分与有限区间上无界函数的瑕积分的概念,掌握其计算方法。

  6.会用定积分计算平面图形的面积以及平面图形绕坐标轴旋转一周所得的旋转体的体积。

  考试方式与试卷结构


  1.考试方式:闭卷,笔试。

  2.试卷分数:满分150分。

  3.考试时间:150分钟。

  4.试卷内容比例:函数极限和连续知识约40分,一元函数微分学知识约55分,一元函数积分学知识约55分。

  5.题型比例:

  填空题,共5小题,每小题3分,计15分。

  单项选择题,共5小题,每小题3分,计15分。

  计算题,共9小题,每小题10分,计90分。

  综合解答题2题,计20分。

  证明题1题,计10分。

  参考书目


  高等数学(上册)(第七版),同济大学数学系编,高等教育出版社,2014年7月,ISBN号:9787040396638。

推荐阅读

公众号

抖音

bilibili

微博

联系我们

服务热线:023-68141520
返回顶部
请选择培训项目
专升本/专转本/专接本 等级职称/考研
会计 教师资格证 计算机等级 英语等级 考研

操作成功

关闭