备考2021年上海专升本的考生请注意,上海应用技术大学专升本考试大纲已经确定了,以下是关于《电路》、《高等数学》的考纲详情,如果你还不清楚具体的考试内容、考试要求、考查形式等,就请认真查看下方内容~
一、适用对象:
电气工程及其自动化、电子信息工程、自动化专业“专升本”入学考试
二、试卷结构:
满分:200分,电路:100分,高等数学:100分
三、考试方式与时间:
闭卷笔试,电路:90分钟,高等数学:90分钟
《电路》考试大纲
考生应按本大纲的要求,理解“电路中”中直流稳态电路、单相交流稳态电路、三相交流电路、互感电路、一阶动态电路、非正弦周期电流电路、线性电路的复频域分析的基本概念与基本理论;学会、掌握上述各部分的基本方法。应具有一定的电路常识和电路分析能力。
考试内容:
一、直流电路
1.电路模型和电路定律
(1)电路元件、参考方向、电路分析的基本变量。
(2)掌握电阻、电源、受控源的电压、电流关系,掌握电路元件功率的计算及吸、放判断。
(3)重点掌握KCL、KVL,电路的整体整体约束的概念,KCL、KVL在电路分析中的应用。
2.电阻电路的等效变换
(1)理解“等效变换”的概念。
(2)掌握电阻电路的Y-△等效变换。
(3)掌握电源的等效计算,电源的等效变换。
(4)重点掌握输入电阻与等效电阻的求取。
3.电阻电路的一般分析及电路定理
(1)掌握支路电流法、回路电流法、结点电压法及其应用。
(2)重点掌握叠加定理、戴维宁定理及其应用。
(3)理解诺顿定理。
二、一阶动态电路分析
1.掌握一阶电路的零输入响应,零状态响应,全响应及其分析方法。
2.重点掌握电路的初始条件的求取,一阶电路的三要素公式的应用。
三、相量法
1.相量法基础
(1)掌握正弦量的表示,相量法及简单相量图的画法。
(2)重点掌握电路定律的相量形式,电路元件上电压电流的相量形式。
2.正弦稳态电路的分析
(1)掌握阻抗和导纳的计算及等效变换。
(2)掌握相量法用于分析计算正弦稳态交流电路以及相量图的作图方法,正弦稳态交流电路的功率及其计算。
(3)掌握串联谐振电路的特点及分析方法,了解并联谐振电路的特点及分析方法。
(4)了解谐振相量图及谐振曲线。
四、互感电路分析
1.互感电路基本特征
(1)掌握互感系数、耦合因数、同名端的概念。
(2)重点掌握耦合电感元件相量模型。
2.互感电路一般分析
(1)掌握互感电路的分析计算,重点掌握去耦等效电路(一端并接)画法。
五、三相电路
1.对称三相电路
(1)掌握对称三相电路的结构、特点及分析方法。
(2)重点掌握对称三相电路的相、线电压、电流的关系及相量图,一相计算方法,三相功率的求取。
2.不对称三相电路
(1)理解不对称三相电路的基本概念及特点,中性点位移与中点电压UN’N,相序器的概念,不对称Y-Y电路中中线的作用。
(2)了解不对称三相电路电流、电压、功率的计算。
六、非正弦周期电流电路和信号的频谱
1.掌握非正弦周期电流、电压的特点及其有效值、平均值、平均功率的计算。
2.了解周期函数的对称性质。
3.了解谐波分析法求解非正弦周期电流电路。
七、线性电路的复频域分析
1.了解拉普拉斯变换、拉普拉斯反变换的定义
2.掌握拉普拉斯变换的基本性质
3.掌握线性电路的复频域模型
4.熟练应用拉普拉斯变换分析线性电路
参考书目:
1.《电路基础》第2版,贺洪江主编,高等教育出版社,2011,ISBN:9787040322576
2.《电路》第五版,邱关源主编,高等教育出版社,2005,ISBN:9787040196719
《高等数学》考试大纲
考生应按本大纲的要求,理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握上述各部分的基本方法。应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力。
考试内容:
一、函数、极限和连续
(一)函数
(1)理解函数的概念、熟悉基本初等函数(幂函数指数函数对数函数三角函数反三角函数)会求分段函数的定义域、函数值。
(2)理解复合函数及分段函数的概念,了解函数与其反函数之间的关系(定义域、值域、图像)。
(二)极限
(1)理解数列极限的概念、掌握极限基本性质
(2)理解函数极限的概念(会求函数在某点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。)
(3)理解无穷小量,会进行无穷小量阶的比较,会运用等价无穷小量替换求极限。
(4)掌握用两个重要极限求极限的方法
(三)连续
(1)理解函数连续的概念,掌握判断函数(含分段函数)在一点处的连续性的方法。
(2)掌握闭区间上连续函数的性质
有界性定理最大值与最小值定理介值定理
二、一元函数微分学
(一)导数与微分
(1)理解导数概念及其几何意义。会用公式求初等函数导数,会求分段函数导数,会求隐函数、参数方程的导数。
(2)了解高阶导数
(二)微分中值定理及导数的应用
掌握微分中值定理
(1)罗尔(Rolle)定理拉格朗日(Lagrange)中值定理
(2)会用洛必达法则求极限
(3)函数增减性的判定法
(4)函数的极值与极值点最大值与最小值
三、一元函数积分学
(一)理解不定积分意义,会计算不定积分,包括换元法与分部积分法。
(二)定积分
(1)理解定积分意义,会计算定积分。
(2)定积分的应用:平面图形的面积旋转体体积
四、向量代数与空间解析几何
(一)向量代数
(1)掌握向量的概念,理解向量的定义向量的模单位向量向量在坐标轴上的投影向量的坐标表示法
(2)向量的线性运算(向量的加法向量的减法向量的数乘)
(3)熟练掌握二向量平行、垂直的充分必要条件。
(二)平面与直线
(1)理解平面的表达式,会求平面的表达式
(2)理解直线的表达式,会求直线的表达式
五、多元函数微积分学
(一)多元函数微分学
(1)理解多元函数
(2)理解偏导数与全微分,会求复合函数的偏导数
(3)二元函数的无条件极值
(二)二重积分
(1)理解二重积分的概念,会计算二重积分
六、无穷级数
(一)数项级数
(1)理解数项级数的概念收敛与发散(级数收敛的必要条件)
(2)正项级数收敛性的判别法(比较判别法比值判别法)
(3)熟悉几何级数、p级数的收敛条件。
七、常微分方程
(一)一阶微分方程
(1)了解常微分方程的基本概念,会区分通解与特解。
(2)会求解可分离变量的微分方程
(3)一阶线性微分方程
参考书目:
1.高等数学(上、下册),同济大学数学系(编),第七版,高等教育出版社。
2.高等数学附册—学习辅导与习题选解(同济·第七版),同济大学数学系编,高等教育出版社。