专升本/专转本/专接本
地区
栏目
大纲

2022江西专升本高数大纲_考试范围

发布时间:2022/01/17 11:35:00 阅读量:7466

热点: 江西专升本考试大纲 江西专升本高等数学

  2022江西专升本高等数学考试大纲发布了吗?考哪些内容?今年江西专升本专业课为省统考,其最新专业课考试大纲已经发布了。其中高数考函数、极限、微分、不定积分等等。下面就是2022江西专升本高数考试的范围,仔细查看! 

2022江西专升本高数大纲

  Ⅰ.考试内容与要求


  本科目考试内容包括函数、极限、连续、一元函数微分学及其应用、一元函数积分学及其应用、多元函数微分学及其应用、二重积分及其应用、常微分方程等。主要考查考生对基本概念和基本理论的理解,运用基本理论和基本方法进行计算的能力,以及综合运用所学知识分析并解决简单的实际问题的能力。考试内容的要求由低到高,概念和理论的要求分为"了解"和"理解"两个层次,方法和运算的要求分为"掌握"和"熟练掌握"两个层次。具体内容与要求如下;

  一、函数、极限和连续


  (一)函数

  1.理解函数的概念,掌握函数(含分段函数)的定义域、表达式及函数值的求法,掌握实际问题的函数关系式的建立。

  2.了解函数的单调性、奇偶性、有界性和周期性的概念。

  3.了解反函数的概念。

  4.掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。

  5.熟练掌握基本初等函数的性质及其图象。

  6.了解初等函数的概念。

  (二)极限

  1.了解数列极限的概念。

  2.了解函数极限的概念,理解函数极限存在的充分必要条件。

  3.熟练掌握极限的四则运算法则。

  4.熟练掌握两个重要极限。

  5.了解无穷小量与无穷大量的概念、无穷小量的性质、无穷小量与无穷大量的关系。理解高阶、低阶、同阶和等价无穷小量的概念,熟练掌握等价无穷小代换求极限的方法。

  (三)连续

  1.理解函数在一点连续与间断的概念,掌握函数(含分段函数)连续性的判断方法。

  2.掌握求函数的间断点并判断其类型的方法。

  3.了解闭区间上连续函数的最值定理、介值定理、零值定理。

  4.理解初等函数在其定义区间上的连续性,掌握用函数连续性求极限的方法。


  二、一元函数微分学及其应用


  (一)导数与微分

  1.理解导数的概念、导数的几何意义、函数可导性与连续性之间的关系,掌握用导数定义判断函数在一点处的可导性的方法。

  2.掌握曲线的切线方程与法线方程的求法。

  3.熟练掌握导数的基本公式、四则运算法则、复合函数的求导法则。

  4.掌握隐函数和由参数方程所确定的函数的求导法,掌握对数求导法。

  5.理解高阶导数的概念,掌握高阶导数的求法。

  6.理解函数微分的概念,理解可微与可导的关系、微分的四则运算法则、一阶微分的形式不变性,掌握函数微分的求法。

  (二)微分中值定理与导数的应用

  1.了解罗尔中值定理、拉格朗日中值定理。

  2.熟练掌握用洛必达法则求2022江西专升本高数大纲型为定式的极限。

  3.掌握用导数判定函数单调性的方法,掌握函数的单调区间的求法。

  4.了解函数极值的概念,掌握函数的极值和最值的求法,熟练掌握实际问题最值的求法。

  5.掌握曲线凹向的判定方法,掌握曲线的凹凸区间和拐点的求法。


  三、一元函数积分学及其应用


  (一)不定积分

  1.理解原函数与不定积分的概念,掌握不定积分的性质。

  2.熟练掌握基本积分公式。

  3.熟练掌握不定积分第一换元法,掌握不定积分第二换元法。

  4.熟练掌握不定积分的分部积分法。

  (二)定积分

  1.了解定积分的概念,理解定积分的几何意义,了解函数可积的条件。

  2.掌握定积分的基本性质。

  3.理解变限积分函数的概念,熟练掌握变上限函数的导数。

  4.熟练掌握牛顿-莱布尼茨公式。

  5.熟练掌握定积分的换元积分法与分部积分法。

  (三)定积分的应用

  1.熟练掌握直角坐标系下用定积分计算平面图形面积的方法。

  2.掌握求平面图形绕坐标轴旋转所生成的旋转体体积的方法。

  四、常微分方程


  (一)一阶微分方程

  1.了解微分方程的基本概念。

  2.熟练掌握可分离变量微分方程的解法。

  3.掌握齐次微分方程的解法。

  4.掌握一阶线性微分方程的解法。

  (二)二阶线性微分方程

  1.了解二阶线性微分方程解的结构。

  2.掌握二阶常系数齐次线性微分方程的解法。

  五、多元函数微分学及其应用


  (一)多元函数微分学

  1.了解多元函数的概念、二元函数的几何意义、二元函数的极限与连续的概念,掌握二元函数定义域的求法。

  2.理解偏导数的概念,熟练掌握多元函数一、二阶偏导数的求法。

  3.了解全微分的概念,理解全微分存在的必要条件与充分条件,掌握多元函数全微分的求法。4.掌握多元复合函数的求导法则。

  5.了解隐函数存在定理,掌握求由方程F(x,y,2)=0所确定隐函数z=z(x,y)的一阶偏导数的方法。

  6.掌握求二元函数极值的方法。

   (二)多元函数微分学的应用

  1.掌握求解实际问题中的多元函数最值的方法。

  2.掌握用拉格朗日乘数法求解实际问题最值的方法。

  六、二重积分及其应用


  1.了解二重积分的概念与性质,理解二重积分的几何意义。

  2.熟练掌握二重积分在直角坐标系和极坐标系下的计算方法,掌握交换二次积分的积分次序的方法。

  3.掌握用二重积分计算空间立体体积的方法。

  Ⅱ.考试形式与题型


  一、考试形式

  考试采用闭卷、笔试形式,试卷满分150分,考试时间120分钟。

  二、考试题型

  考试题型从以下类型中选择∶单项选择题、填空题、计算题、解答题、应用题等。

  Ⅲ.参考书目

  1.凌巍炜,谢良金.高等数学∶基础模块【M】.长春∶东北师范大学出版社,2020.(ISBN∶9787568134965)

  2.侯风波.高等数学【M】.5版.北京∶高等教育出版社,2018.(ISBN:9787040503852)

上一篇:2022江西专升本专业课考试大纲_考试科目 下一篇:2022年江西专升本考试大纲出了吗?最新统考科目考试说明发布!
推荐阅读